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We investigate discrete light dynamics in the presence of a longitudinal defect of arbitrary extension,
amplitude and position in a nonlinear waveguide array. We model and discuss the physics of the soliton-defect
interaction, showing how to gain complete control over the system outcome for soliton-based data processing.
We propose all-optical management in dye-doped liquid crystals.
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I. INTRODUCTION

Energy localization in the presence of discreteness has
gained importance in several branches of contemporary sci-
ence, including—but not limited to—biological systems �1�,
nonlinear optics �2�, Bose-Einstein condensates �BECs� �3�,
and solid state physics �4�. Considerable attention has been
devoted to systems with tunable lattice parameters, such as
arrays of waveguides in photorefractives �5,6� or nematic
liquid crystals �NLCs� �7�, or BEC droplets �3,8�. The
electro-optic response of NLCs and photorefractives allows
to tune the lattice linear properties �refractive modulation�
�5–7�, whereas Feshbach-resonance can modulate and re-
verse the nonlinearity in the BEC �9�. In fact, significant
advancements in soliton-based data processing �SDP� �5,10�
can be foreseen in those geometries and/or materials where
nonlinearity can be tuned and hence light dynamics con-
trolled.

A promising and powerful approach to the latter aim is the
interaction between solitons �or, more generally, solitary
waves or transversely localized light� and defects. The study
of such interactions is of great importance �11–16� and can
be generalized to nonlinear waveguides of arbitrary physical
nature �17�. Despite some previous attempts in specific cases
�13� and transverse inhomogeneities �11,12,14–16�, how-
ever, a thorough analysis of soliton-defect interactions in the
relevant case of defects �localized or extended� encountered
during propagation was not carried out before to our knowl-
edge. While in the case of linear inhomogeneities numerical
and theoretical studies demonstrated that a defect may re-
flect, transmit, or trap the soliton around it �11,12,14–16�, for
nonlinear infinitesimal defects numerical simulations showed
that a soliton may split into secondary pulses if the perturba-
tion exceeds a threshold �13�. A similar dynamics was ob-
served in discrete and continuous systems with periodic
transverse properties �9,18–20�. However, the physics of the
latter type of interaction is not clear to date, as its compre-
hension was limited to numerical approaches to the problem
�9,13,18–20�.

In this paper we investigate discrete light dynamics in the
case of an arbitrary longitudinal defect located in a specific

section of a waveguide array, perpendicular to the waveguide
axes. With reference to a dielectric array, but undertaking a
general approach �which also applies to the continuum� �21�,
we model soliton-defect interactions and unveil the underly-
ing physics �Secs. II and III�. It is well known that a discrete
array is governed by a nonintegrable model; therefore, to
provide analytical results, we first focus on the long-
wavelength limit �21�. We introduce an original approach to
achieve full control over the system, anticipating a series of
potential applications to SDP. Light-reconfigurable all-
optical circuits can be envisioned where data are coded into
guided light signals and manipulated by illuminating a re-
gion of the nonlinear array, a concept amenable to find ap-
plications in various media. Finally, we propose a viable
implementation in doped NLC arrays �22–24�, as they ex-
hibit excellent potentials for nonlinear optics while also be-
ing electro-optically adjustable �7�.

II. THEORETICAL MODEL

Discrete light propagation can be described by a discrete
nonlinear Schrödinger equation �DNLSE� �1–4,25�. In the
presence of a single nonlinear defect, the DNLSE can be cast
in the form

i
�qn

�Z
+ �qn+1 + qn−1 − 2qn� + 2�1 + R�Z��qn�qn�2 = 0 �1�

qn being a dimensionless slowly varying mode envelope �2�
�or wave function for BEC or molecular systems �1–3��, Z a
normalized propagation coordinate, and R�Z�= �

2� rect� Z−Z0

�
�

the contribution arising from a uniform nonlinear defect with
�, �, and Z0 arbitrary constants.The long-wavelength �quasi-
continuum �26�� limit of Eq. �1� is obtained by replacing n
with the continuous variable X and expanding the linear
terms qn±1 in a Taylor series around X=n, i.e.,

i
��

�Z
+

�2�

�X2 + 2�1 + R����2� = 0 �2�

where we set ��X ,Z�=qn�Z�. Equation �2� is a perturbed
version of the nonlinear Schrödinger equation, which can be
regarded as a general model of dispersive nonlinear media
�27,28�. To investigate the evolution of a high-order soliton
pulse of the type ��X ,0�=nA sech�AX�, with arbitrary n and
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A, we address the two limits ��1 and ��1 and then dis-
cuss the intermediate cases.

A. Soliton splitting in �-like defects

1. Model and solution

When � is smaller than any characteristic soliton length,
the defect can be described by R�Z�= �

2u0�Z−Z0�, with u0 the
Dirac � function. The outgoing wave �+ at Z=Z0+ can be
obtained by integrating Eq. �2�. This gives �+
=�− exp�i���−�2�, �− being the incoming wave at Z=Z0−.
The emerging solution is completely characterized by the
Zakharov-Shabat �ZS� non-self-adjoint eigenvalue problem
�29,30�

i
�v

�X
+ Uv − ��3v = 0, U = � 0 q

q* 0
� , �3�

where v= �v1�X� ,v2�X��, q�X�=��X ,Z0+� is the scattering po-
tential, and �3 the Pauli spin matrix �30�. The amplitude and
phase of the emerging solitons are proportional to imaginary
and real parts of the discrete eigenvalues �m, respectively,

corresponding to the discrete spectrum of the scattering data
�29�.

We aim at relating the splitting onset in � to the input
parameters A and n. Equation �2� is invariant under the scal-
ing X→�X, Z→�2Z, �→ �

� , and �→��2, with � an arbi-
trary constant. Without loss of generality, we can take real
the amplitude A and nA	2 for integers n	1; owing to the
symmetries of Eqs. �3� �30�, we focus on positive �. With the
introduction of an arbitrarily small parameter 
= �An�−1, the
scattering potential q of the ZS eigenvalue problem becomes

q=
P�X�


 exp�i
Q�X�


2
� with P�X�=sech�AX� and Q�X�

=��sech�AX��2. By the change of variables

v1 = s1�Y�exp�i
Q

2
2	 ,

v2 = s2�Y�exp�− i
Q

2
2	 , �4�

with Y =X
, Q→Q�Y�, and P→P�Y�, we can recast Eq. �3�
as a coupled Schrödinger-like problem with complex poten-
tials:

4
4

�2s1

�Y2

�2s2

�Y2
� = 
− 4�P�Y��2 − �2� +

�Q

�Y
	2

− 2i
2�2Q

�Y2 i4
2�P

�Y

i4
2�P

�Y
− 4�P�Y��2 − �2� +

�Q

�Y
	2

+ 2i
2�2Q

�Y2
��s1�Y�

s2�Y� � �5�

with �=�
2 and Veff=−�P�2− ��YQ /2�2 its effective potential. When the phase amplitude � is small, Veff has a single minimum
in X=0 and the eigenfunctions corresponding to the low-energy states inside the potential well �or equivalently with a large
imaginary eigenvalue � in the ZS scattering problem� are localized near this point �31�. In this configuration the effect of the
imaginary term 2i
2 �2Q

�Y2 can be neglected as long as �=O�
� �Q
��. The remaining system �5� can be diagonalized by

�s1

s2
� = �− 1 1

1 1
��w1

w2
� , �6�

obtaining two independent Schrödinger-like problems:

4
4

�2w1

�Y2

�2w2

�Y2
� = 
− 4�P�Y��2 − �2� +

�Q

�Y
	2

− 4i
2�P

�Y
0

0 − 4�P�Y��2 − �2� +
�Q

�Y
	2

+ 4i
2�P

�Y
��w1�Y�

w2�Y� � . �7�

Then we perform a series expansion of P and Q near the
effective potential minimum, by introducing �P�Y��2= P0

− P2Y2+O�Y3�, �YQ�Y�=Q1Y +O�Y2�, and Y1=
2Y thus ob-
taining �up to order O�
4�� the normalized eigenvalue equa-
tion for the quantum harmonic oscillator �32�:

�2w1,2

�T2 + �� − T2�w1,2 = 0 �8�

with �1= i�, �=4P2−Q1
2 and for w1,

Y1 =
��
2

2
T − i

2�2P2 + Q1�1/
2�
�

,

� =
2P0� − 2����1 + �− 2P2
2 + Q1�1�2��

���
2
,
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and for w2,

Y1 = −
��
2

2
T + i

2�2P2 + Q1�1/
2�
�

,

� =
2P0� − 2����1 + �2P2
2 + Q1�1�2��

���
2
. �9�

The first two excited eigenvalues �1a and �1b �solutions for
�=1� are real for Q1=0, therefore the eigenvalues �m and the
coordinate shifts �9� are purely imaginary. Hence, the soliton
configuration is stable in Y =0. The distance between �1a and
�1b decreases as Q1 grows and goes to zero when �=0. Fol-
lowing the eigenvalue collision, the effective potential Veff
undergoes a classical cusp catastrophe �33,34�, i.e., two new
minima Y± are created and Y =0 becomes a local maximum.
The symmetry of the eigenfunctions localized around Y =X
=0 is broken; a Taylor expansion around the new minima
reveals a nontrivial real part of the eigenvalue �arising from
�YQ�Y±� with different signs for Y±�. The critical �c, provid-
ing a symmetry-breaking perturbation of the ground-state
eigenfunctions, corresponds to �=0 and is �c= 1

nA2 . The latter
expression is O�
� and, therefore, our initial assumption is
justified. For a fixed A, such that 
= �An�−1�1, the distribu-
tion �c versus n is found by defining �n=�c�n� and iterating
�n+1= n

n+1�n, a dissipative one-dimensional �1D� map with a
damping factor 0.5�

n
n+1 �1 �35�. For a variable A, the start-

ing point in the plane ��n ,�n+1� is always attracted toward the
stable fixed point in the origin for increasing n. To verify this
result, we numerically solve the ZS problem �3� and evaluate
�c for various solitary input parameters �Fig. 1�. As pre-
dicted, when the soliton number n increases, �c rapidly tends

to the fixed point �0,0�, independently from the initial posi-
tion in ��n ,�n+1� and in excellent agreement with the
asymptotic dependence �dotted lines in Fig. 1�.

2. Tuning the bifurcation onset and all-optical soliton generation

Since �c decreases as the beam amplitude An increases
�for Z0=0�, an interesting splitting scenario is expected for
Z0�0 and amplitude or waist modulated �i.e., breathing� in-
coming beams. The results are qualitatively independent of
the specific breather wave in the system; for simplicity and
without loss of generality we launch a two-soliton breather
with oscillation period ZT= 2�

8 �30�:

��X,Z0� =
4�cosh 3X + 3 cosh X exp i�8Z0��
cosh 4X + 4 cosh 2X + 3 cos�8Z0�

. �10�

The emerging wave �+ is then

�+ = �P�X,Z0��exp i���P�X,Z0��2 + S�X,Z0�� �11�

with

�P�X,Z0��2 =
16�9 cosh2 X + 6 cos�8Z0�cosh X cosh 3X + cosh2 3X�

�3 cos�8Z0� + 4 cosh 2X + cosh 4X�2 ,

S�X,Z0� = arctan� 3 cosh X sin�8Z0�
3 cos�8Z0�cosh X + cosh 3X

	 ,

P0�Z0�2 =
32

5 + 3 cos�8Z0�
�12�

with �P�X ,Z0��� P0�Z0�. When ��P�X ,Z0��2 and S�X ,Z0� have curvatures in X of different signs, the chirp content �i.e., the
second derivative in X� of ��P�X ,Z0��2 needs first to balance the opposite curvature of S�X ,Z0� and �significantly� alter the
overall phase in order to destabilize the system. Therefore, we do not expect soliton splitting for small � �at least in a
perturbative regime�. When the curvatures of ��P�2 and S are of the same sign, conversely, we can apply our asymptotic
expansion using 
= P0

−1 and obtain the critical �c
* �Fig. 2, dotted line�:

�c = 
�c
*�Z0� , 0 � Z � ZT/2,

− �c
*�− Z0� , ZT/2 � Z � ZT,

�
�c

* =
�2�5 + 3cos�8Z0��
8�23 − 15cos�8Z0�

+
1

�23 − 15cos�8Z0��2� 9

16
sin�16Z0� +

135

64
sin�24Z0� −

1245

64
sin�8Z0�	 . �13�

FIG. 1. �Color online� Theoretical �dashed line� and numerical
�dots� critical phase amplitude �c�n� in the plane ��n ,�n+1� for A
=1 and 2�n�20 �a�, A=2 and 1�n�20 �b�.
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To verify our predictions, we numerically solve the ZS prob-
lem versus strength � and position Z0 of the nonlinear defect
�Fig. 2, pseudocolor plot�. As apparent, numerical and pre-
dicted �c match well and no soliton splitting is observed for
curvatures of different signs; a significant reduction of �c is
achieved for Z0 close to the amplitude peaks of the breathing
wave. It is noteworthy that, even for parameters beyond the
range where the perturbative expansion is valid �i.e., for �
�O�
��, the numerics confirm the phenomenology we pre-
viously addressed theoretically, with an increased transverse
velocity after splitting. We therefore underline this feature:
the onset of soliton emission can be adjusted. The latter ef-
fect can also take place by tuning the power for a fixed Z0 in
a region where the excitation exhibits �intensity-dependent�
oscillations. Since this occurs for specific input powers N, it
allows a complete �nonlinear� control over the phenomenon.
To elucidate such type of response, we exploit the dynamics
of a high-order soliton ��X ,0�=�Nsech X, with 1�N�4. In
fact, the single-soliton long-time behavior for R�Z�=0 is ap-
proached after an oscillating transient with period adiabati-
cally changing from � �N=1� to ZT �N→4� �30�. For in-
stance, taking Z0=0.6 and �=0.26, we solve Eq. �2� versus
excitation N with the aid of a beam propagation code �Fig.
3�. As foreseen, the solitary breather splits immediately be-
fore the oscillation peak comes close to the defect in Z0 �Fig.
3, dotted line�, while no symmetry breaking is observed for
N�3 �due to the sign change in the phase curvature of �� in
perfect agreement with our model. Hence, the excitation N
precisely determines the system outcome for a given defect
position Z0, thus permitting all-optical soliton emission at a
longitudinal nonlinear defect.

B. Dynamics at extended defects

When � is much greater than any characteristic soliton
length, the defect takes the expression R�Z�= �

2u−1�Z−Z0�,
with u−1�Z� the Heaviside function. It is convenient to res-
cale Eq. �2� into a dissipative form:

i
��

�Z
+

�2�

�X2 + 2���2� = i��Z�� , �14�

having introduced �=� exp�−��, �=���Z�dZ, and �

=
ln�1+�/2�

2 u0�Z−Z0�. In this case the emerging beam �+

=�− exp� ln 1+�/2
2

� is a scaled replica of the incoming wave �−
and, therefore, it evolves towards a soliton with a higher
energy �assuming positive ��. No splitting is expected.

III. LATTICE SIMULATIONS

Based on the theoretical model discussed above, a rich
splitting scenario is offered by the interaction of an immobile
defect R�Z� with a localized or solitary wave with a breath-
ing character �at least over the initial propagation distance in
front of the defect� for ��1. For the most “discrete” situa-

FIG. 4. �Color online�. �a� Z position of the first three oscillation
peaks versus input power P �for Z0=10 and �=0.6�; �b� output
intensity distribution in Z=Z0+L=60 versus input power P; �c�
output intensity sections in X=0, versus input power P, defect
length �, and defect strength �; �d� sections of �c� at specific �.

FIG. 2. �Color online� Calculated real part of the largest imagi-
nary eigenvalue �pseudocolor plot� and predicted critical chirp �c

�dotted line� versus defect displacement Z0 and strength �.

FIG. 3. �Color online� �Pseudocolor plot� output intensity sec-
tions after a distance Z=Z0+L=3ZT+Z0 versus input power N �for
Z0=0.6 and �=0.26�; �dotted line� oscillation peak crossing Z0.
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tion, we exploit the dynamics of a simple Kronecker input
qn�0�=A�n0. For the simulations we used an array of 300
waveguides and a step-adaptive algorithm. When the power
P=A2 overcomes discrete diffraction, the system approaches
a stable state by a breathing transient with both period and
peak-to-peak amplitude adiabatically reducing to zero as P
→� �i.e., when the discrete soliton extends over a single
channel waveguide� �see Fig. 4�a� for Z0=10�. For small �,
we expect the breathing input to break into two solitons im-
mediately before its oscillation peak reaches the defect in Z0.
This is visible in Fig. 4�b� as the first three peaks move close
to Z0 for P�2.0, 2.2, and 2.35, respectively �owing to the
small �=0.6, no other breaking is observed�. The latter sce-
nario completely changes for ��1, when no splitting is ex-
pected. To investigate the transition between the limits �
�1 and ��1, and therefore provide a connection with the
previous theoretical analysis, we numerically acquired the
output intensity in X=0 versus excitation and defect param-
eters �, � �Figs. 4�c� and 4�d��. As � increases, the splitting
regions adiabatically shrink in power and move downward
�due to intensity gain in the defect�, eventually overlapping
for large �. For higher � the system moves to a region where
no emission takes places, in agreement with the previous
analysis. These findings suggest that a proper combination of
defects with different size could precisely control the power
intervals for soliton splitting, with potential applications in
wavelength filters and/or demultiplexers. As the coupling be-
tween evanescently coupled waveguides is quite sensitive to
wavelength �much more than in bulk media�, nonlinear split-
ting could generate solitons with differing directions of
propagation at each wavelength; conversely, for a narrow
splitting region in power, only a few wavelengths could be
filtered out from the whole incoming spectrum. Optically

controlled switches, logic gates, and diodes �the effect is
nonreciprocal �36�� can be envisioned, as well as power fil-
ters to be employed in feedback systems with mono- or
bistable response.

Among various suitable discrete systems, nematic liquid
crystalline arrays offer electro-optic tunability and a large
optical nonlinearity �7,37�. An electric field �at low or optical
frequency� exerts a torque on the elongated NLC molecules,
which change orientation �hence increase the extraordinary
index of refraction� until a balance is reached with the �in-
termolecular� elastic forces �38�. The nonlinear response as-
sociated with light-induced reorientation can be further tuned
�enhanced, reduced, or even reversed� by doping the NLC
with azo-dye compounds, as an additional photoinduced
torque arises from a guest �dye�–host �NLC� interaction
�39,40�. This nonlinear contribution can be controlled by act-
ing on the polarization and/or intensity of an external illumi-
nation �41�, allowing on-site direct all-optical control of a
nonlinear defect with prescribed and adjustable strength and
size at a specific location of the array.

In conclusion, we have developed a detailed model of
discrete nonlinear light dynamics in the presence of a single
longitudinal nonlinear defect of arbitrary amplitude, position,
and strength. The underlying physics permits to gain full
control over the system. We anticipate a series of applica-
tions as well as an entirely different approach to soliton-
based data processing, where interactions are exploited by
all-optically acting on nonlinearity. We envision these con-
cepts to be readily exploited in azo-dye-doped liquid crystal-
line 1D arrays, as well as in other light-manageable lattices.
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